

Automotive Cyber Security Syllabus

6-Month Course Syllabus

Week 1 - Introduction

- Cybersecurity basics CIA triad, Threats vs Vulnerabilities vs Attacks
- ❖ Automotive Cybersecurity overview − ECU, Gateway, Telematics
- Standards: ISO/SAE 21434, UNECE WP.29 overview
 - Lab: Identify attack surfaces in a modern vehicle

Week 2 - Cryptography Foundations

- Symmetric crypto (AES, DES, ChaCha20)
- Asymmetric crypto (RSA, ECC, EdDSA)
- Hash functions & MACs (SHA2, SHA3, HMAC)
- Lab: Implement AES encryption/decryption in C

Week 3 - Applied Cryptography in Automotive

- Digital signatures & certificates (PKI in cars)
- Key management in ECUs (Key rotation, provisioning)
- Random Number Generators (TRNG vs PRNG)
- Lab: Generate & verify ECDSA signatures

Week 4 – Types of Security Hardware

- Secure elements in automotive:
 - > HSM (Hardware Security Module)
 - SSM (Secure Subsystem Module)
 - > TPM, TrustZone, SE chips
 - Automotive microcontrollers with security IP (NXP S32K, Infineon AURIX, STM32H7)
 - Lab: Accessing crypto services via an HSM simulator

Phase 2 – Automotive Protocols & Secure Communication (Weeks 5–8)

Week 5 - In-Vehicle Networks & Attack Surfaces

- CAN, CAN FD, LIN, FlexRay, Automotive Ethernet
- UDS (ISO 14229) services & security access
- DoIP (ISO 13400) basics
- Lab: Capture and analyze CAN traffic with PCAN/SocketCAN

Week 6 - Attacks on Automotive Networks

- Replay, fuzzing, spoofing, DoS, bus flooding
- Diagnostic security bypass (Seed/Key brute force)
 - Lab: Perform replay attack on a CAN bus demo

Week 7 – Secure Onboard Communication (SecOC)

- AUTOSAR SecOC architecture
- Freshness counter & MAC generation
- Challenges in synchronization
- Lab: Implement SecOC protection on CAN messages

Week 8 - Secure Communication over IP

- TLS/DTLS in automotive Ethernet
- VPN, IPsec for backend-vehicle links
- Secure V2X communication (IEEE 1609.2)
- Lab: Setup secure TLS client/server for ECU simulator

Phase 3 – Secure ECU Software & Boot Process (Weeks 9–12)

Week 9 - Secure Boot Fundamentals

- Chain of Trust in embedded systems
- Signed firmware validation
- Anti-rollback protection
- Lab: Implement a basic secure bootloader on STM32/S32K board

Week 10 - Firmware Updates & OTA Security

- Secure flashing (local vs OTA)
- Firmware integrity (hash/signature checks)
- Update rollback protection
- Lab: Simulate OTA update with signature verification

Week 11 - Secure Memory & Runtime Protections

- MPU (Memory Protection Unit) & TrustZone
- Code & data execution protection (XOM, Secure regions)
- Anti-tamper & fault injection protection
- Lab: Configure TrustZone partitions on Cortex-M33

Week 12 - Hardware Security Modules in Action

- Automotive HSM functions: crypto, key storage, secure boot
- SSM vs HSM usage scenarios
- Lab: Implement seed/key challenge with HSM emulation

Phase 4 – Threat Modeling, Standards & Penetration Testing (Weeks 13–16)

Week 13 - Threat Modeling

- STRIDE, DFD, Attack Trees in automotive
- Practical examples: Telematics ECU threat model
- Lab: Build a threat model for a CAN-based ECU

Week 14 - ISO/SAE 21434 in Practice

- Cybersecurity goals, claims, work products
- Security V-model in development lifecycle
- Lab: Create cybersecurity requirements for an ECU

Week 15 - UNECE WP.29 & Compliance

- Regulatory requirements for OEMs & suppliers
- CSMS (Cyber Security Management System)
- SUMS (Software Update Management System)
- Lab: Draft compliance checklist for an ECU program

Week 16 - Penetration Testing & Tools

- Methodology for ECU/IVN pentesting
- Tools: CANoe, Scapy, Wireshark, CANalyzers
- Lab: Perform fuzzing on a simulated UDS service

Phase 5 – Advanced Security (Weeks 17–20)

Week 17 - Intrusion Detection Systems (IDS)

- CAN anomaly detection
- Rule-based vs ML-based IDS
- Lab: Build a basic IDS to detect abnormal CAN traffic

Week 18 - Telematics & Cloud Security

- Attack vectors in TCU (Telematics Control Unit)
- Secure MQTT, TLS for backend connectivity
- Lab: Secure a simulated telematics channel

Week 19 - V2X & Future Trends

- C-ITS, V2V, V2I communication
- ❖ IEEE 1609.2 PKI for V2X
- Quantum-safe crypto for automotive
- Lab: Sign and verify V2X messages

Week 20 - Case Studies of Real Attacks

- Jeep Cherokee hack (Miller & Valasek)
- Tesla Model S hacking cases
- Bluetooth/TPMS vulnerabilities
- Lab: Analyze case study and simulate simple exploit

Phase 6 – Capstone & Industry Preparation (Weeks 21–24)

Week 21 – Secure Development Lifecycle

- Integration of cybersecurity in ASPICE & AUTOSAR
- CI/CD with security checks (static & dynamic analysis)
- Lab: Secure coding audit on ECU C code

Week 22 - Forensics & Incident Response

- Automotive logging strategies
- Post-attack analysis workflow
- Lab: Extract attack traces from CAN log files

Week 23 - Final Capstone Project (Build Secure ECU)

- Design & implement:
 - Secure Boot
 - ➤ HSM key storage
 - SecOC CAN communication
 - OTA with signature validation

Week 24 – Capstone Presentation & Industry Outlook

- Present project to peers (like an OEM security review)
- Latest industry trends: EV charging security, autonomous vehicle security, AI in IDS
- Career pathways for automotive cybersecurity

Deliverables

- Weekly assignments + labs
- ➤ Mid-term project (Week 12): Secure Boot + SecOC CAN demo
- Final capstone (Week 23–24): Secure ECU subsystem with documentation + presentation